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Chaotic behavior and damage spreading in the Glauber Ising model:
A master equation approach

Thomas Vojta
Institut für Physik, Technische Universita¨t, D-09107 Chemnitz, Germany

and Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403
~Received 2 December 1996!

We investigate the sensitivity of the time evolution of a kinetic Ising model with Glauber dynamics against
the initial conditions. To do so we apply the ‘‘damage spreading’’ method, i.e., we study the simultaneous
evolution of two identical systems subjected to the same thermal noise. We derive a master equation for the
joint probability distribution of the two systems. We then solve this master equation within an effective-field
approximation which goes beyond the usual mean-field approximation by retaining the fluctuations though in
a quite simplistic manner. The resulting effective-field theory is applied to different physical situations. It is
used to analyze the fixed points of the master equation and their stability and to identify regular and chaotic
phases of the Glauber Ising model. We also discuss the relation of our results to directed percolation.
@S1063-651X~97!03705-7#

PACS number~s!: 05.40.1j, 64.60.Ht, 75.40.Gb
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I. INTRODUCTION

The physics of dynamic phase transitions and dyna
critical phenomena has been a subject of great interest fo
last two decades. Whereas the dynamic behavior at and c
to usual static phase transitions is well understood@1,2#,
much less is known about dynamic phase transitions wh
do not have a static counterpart. Sometimes it is not e
known whether or not a particular dynamic transition co
cides with an equilibrium phase transition.

One of these dynamic phenomena is the so-called ‘‘da
age spreading’’@3–5#. The central question of this problem
is how a small perturbation~called the damage! in a coop-
erative system changes during the further time evoluti
Among the simplest of such cooperative systems are kin
Ising models where the above question has been investig
by means of Monte Carlo simulations@4,5#. In these simula-
tions two identical Ising models with different initial cond
tions are subjected to the same thermal noise, i.e., the s
random numbers are used in the Monte Carlo procedure
analogy to the physics of chaotic dynamics@6# the differ-
ences in the microscopic configurations of the two syste
are then used to characterize the dynamics and disting
regular and chaotic phases, depending on external param
~e.g., temperature and magnetic field!.

Later the name ‘‘damage spreading’’ has also been
plied to a different though related type of investigations
which the two systems arenot identical. Instead, one or sev
eral spins in one of the copies are permanently fixed in
direction. Therefore the equilibrium properties of the tw
systems are different, and the microscopic differences
tween the two copies can be related to static and dyna
correlation functions@7,8#. Note that in this type of simula
tions it is not essential to use identical noise~i.e., random
numbers! for the two systems. Instead it is only a convenie
method to reduce the statistical error.

Whereas this second type of damage spreading is
understood and established as a method to calculate eq
551063-651X/97/55~5!/5157~8!/$10.00
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rium properties numerically, much less is known about
original problem of damage spreading, viz. how sensitive
the dynamics of the Ising model to differentinitial condi-
tions. In particular, there are no rigorous results on the tr
sition between regular and chaotic behavior~called the
‘‘spreading transition’’!.

There are two different mechanisms by which the dam
can spread in a kinetic Ising model. First, the damage
spreadwithin a single ergodic component~i.e., a pure state or
free-energy valley! of the system. This is the case fo
Glauber or Metropolis dynamics. Numerical simulations he
consistently give a transition temperature slightly lower th
the equilibrium critical temperature@9#. Grassberger@10#
conjectured that the spreading transition falls into the univ
sality class of directed percolation if it does not coinci
with another phase transition. This was supported by hi
precision numerical simulations for the Glauber Ising mo
@11#.

Second, the damage can spread when the system se
one of the free-energy valleys at random after a quench f
high temperatures to below the equilibrium critical tempe
ture. This is the only mechanism to produce damage spre
ing in an Ising model with heat-bath dynamics. In this ca
the spreading temperature seems to coincide with the e
librium critical temperature below which the two pure stat
separate@4,12,13#. Thus at the spreading point there a
long-range static correlations in the systems, and the tra
tion is expected to fall into a universality class different fro
directed percolation.

In this paper we investigate the damage spreading in
Glauber Ising model by deriving and solving a master eq
tion for the time evolution of a joint probability distribution
for two identical systems with different initial conditions an
subjected to the same thermal noise. The paper is organ
as follows. In Sec. II A we define the model. Transitio
probabilities between the states of a spin pair are calcula
in Sec. II B, and the master equation for the joint probabil
distribution is derived in Sec. II C. We discuss how to co
struct a mean-field approximation for this equation in S
5157 © 1997 The American Physical Society
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5158 55THOMAS VOJTA
III A. In Secs. III B, III C, and III D we present solutions o
the master equation within this approximation for differe
physical situations. Finally, Sec. IV is dedicated to conc
sions and an outlook on future work. A short account of p
of this work has already been published@14# together with a
comparison to the heat-bath Ising model.

II. MASTER EQUATION FOR DAMAGE SPREADING

A. Glauber Ising model

We consider two identical kinetic Ising models withN
sites described by the HamiltoniansH (1) andH (2) given by

H ~n!52 1
2(

i j
Ji j Si

~n!Sj
~n!2h(

i
Si

~n! , ~1!

where Si
(n) is an Ising variable with the values61 and

n51,2 distinguishes the two copies.Ji j is the exchange in-
teraction between the spins andh denotes an external mag
netic field. The dynamics of the Ising models is given by t
Glauber algorithm, i.e., in every time step a lattice sitei is
chosen at random~thesamesite in both copies!. The value of
the spin at this site is calculated according to

Si
~n!~ t11!5sgn$v@hi

~n!~ t !#2 1
21Si

~n!~ t !@j i~ t !2 1
2 #%,

~2!

where the transition probalityv(x) is given by the usua
Glauber expression

v~x!5ex/T/~ex/T1e2x/T!. ~3!

Herehi
(n)(t)5( j Ji j Sj

(n)(t)1h is the local magnetic field a
site i and~discretized! time t in the systemn. j i(t)P@0,1) is
a random number which is identical for both systems, a
T denotes the temperature. The spins at all sites diffe
from site i are unchanged within this time step.

The central quantity in any damage spreading proces
the distance between the two systems in phase space, c
the Hamming distance~or the damage!. It is defined by

D~ t !5
1

2N (
i51

N

uSi
~1!~ t !2Si

~2!~ t !u, ~4!

and is identical to the portion of sites where the spins in
two systems differ.

In order to describe the simultaneous time evolution
the two systemsH (1) andH (2), we define a variablen(t) at
each lattice site which describes the state of a spin
(S(1),S(2)). It has the valuesn511 for S(1)5S(2)51,
12 for S(1)52S(2)51, 21 for 2S(1)5S(2)51, and
22 for S(1)5S(2)521. A complete configuration of the
two Ising models is thus described by the set$n1 , . . . ,nN%.

Since we are interested in the time evolution not fo
single sequence ofj i(t), but in j-averaged quantities w
consider a whole ensemble of system pairs (H (1),H (2)) and
define a probability distribution

P~n1 , . . . ,nN ,t !5K (
n i ~ t !

)
i

dn i ,n i ~ t !L ~5!

where^•& denotes the ensemble average.
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B. Transition probabilities

In order to formulate a master equation for the probabi
distributionP(n1 , . . . ,nN ,t) we need to know the transition
probabilitiesw(n→m) between the statesn of a spin pair.
Since the Glauber dynamics~2! involves only a single lattice
site within each time step, we have to consider transitio
between the statesn of a single site only. Let us look, e.g., a
the transition of sitei from state22 to 11. This corre-
sponds to bothS(1) andS(2) changing from21 to 1. Ac-
cording to the Glauber dynamics~2! this requires
v(hi

(1))2j i.0 andv(hi
(2))2j i.0. Sincev(h) is a monoto-

nous function ofh, both equations are simultaneously fu
filled for v@min(hi

(1) ,hi
(2))#2j i.0. Becausej i is a random

number taken from a uniform distribution between 0 and
the transition probability is given by

w~22→11 !5v@min~h~1!,h~2!!#. ~6!

Analogously, for a transition from state22 to 12 the
two inequalitiesv(hi

(1))2j i.0 andv(hi
(2))2j i,0 have to

be fulfilled. Sincev(h) is a monotonous function ofh, this is
only possible forhi

(1).hi
(2) . The transition probability is ob-

viously given by

w~22→12 !5Q~h~1!2h~2!!@v~h~1!!2v~h~2!!#. ~7!

The transition probabilitiesw(n→m) fulfill the following
symmetry relations:

w~11→n!5w~22→n!, ~8a!

w~12→n!5w~21→n! ~8b!

for any staten as can easily be seen by making the subst
tions Si

(n)(t)→2Si
(n)(t) and j i(t)→12j i(t) on the right-

hand side of Eq.~2!.
The remaining transition probabilities can be calcula

along the same lines as above. They are summarized in T
I.

C. Master equation

Having calculated the transition probabilities between
statesn of a spin pair we are now in the position to writ
down the equation of motion for the probalitity distributio
P(n1 , . . .nN ,t). It has the form of a usual master equatio

TABLE I. Transition probabilitiesw(n→m) between the states
of a spin pair.

22 → 22 v@2max(h(1),h(2))#
22 → 11 v@min(h(1),h(2))#
22 → 21 Q(h(2)2h(1))@v(h(2))2v(h(1))#
22 → 12 Q(h(1)2h(2))@v(h(1))2v(h(2))#
21 → 22 Q(2h(1)2h(2))@v(2h(1))2v(h(2))#
21 → 11 Q(h(1)1h(2))@v(h(2))2v(2h(1))#
21 → 21 v@min(2h(1),h(2))#
21 → 12 v@2max(2h(1),h(2))#
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55 5159CHAOTIC BEHAVIOR AND DAMAGE SPREADING IN . . .
d

dt
P~n1 , . . . ,nN ,t !

52(
i51

N

(
m iÞn i

P~n1 , . . . ,n i , . . . ,nN ,t !w~n i→m i !

1(
i51

N

(
m iÞn i

P~n1 , . . . ,m i , . . . ,nN ,t !w~m i→n i !, ~9!

where the term in the second line describes the decreas
P(n1 , . . . ,nN ,t) due to the initial configuration
$n1 , . . . ,nN% being changed at one of the sitesi from n i to
m i . The term in the third line of the master equation d
scribes the increase ofP(n1 , . . . ,nN ,t) due to ‘‘scattering’’
from all the other states into$n1 , . . . ,nN%. Note that we
have suppressed the factor 1/N in the transition probabilities
which corresponds to random selection of one of the lat
sites in every time step. This neglect corresponds to a red
nition of the time scale~which is now independent of th
system size! and does not change the dynamic behavior.

This master equation contains, of course, the full di
culty of the dynamic many-body problem. A complete so
tion is therefore out of question, and one has to resor
approximation methods. In the following section we discu
how to construct a mean-field-like approximation to the m
ter equation~9!.

III. EFFECTIVE-FIELD APPROXIMATION

Usually a mean-field theory of a phase transition can
obtained by taking the range of the interaction to infinity:

Ji j5J0 /N for all i , j . ~10!

In the thermodynamic limitN→` this suppresses all fluc
tuations. In particular, the local magnetic fieldshi

(n) of all
sites in one system become equal and identical to the m
field valueJ0m. Since the two Ising modelsH (1) andH (2)

are thermodynamically identical, this leads tohi
(1)5hi

(2) .
However, some of the transition probabilities depend on
existence of fluctuations~see Table I!, i.e.,w(n→m) go to
zero with h(1)2h(2)→0. In particular, this is true for
w(22→21) andw(22→12), which are responsible
for increasing the damageD. Consequently, if the thermody
namic limit and the limit of infinite range of the interactio
are taken at a too early stage of the calculation, the resu
model does not show any spreading of the damage. To
cumvent these problems we develop a slightly more sop
ticated effective-field approximation that retains the fluctu
tions though in a quite simplistic manner. As will be show
in Sec. III C, taking the range of the interaction to infini
within the framework of this approximation yields a sensib
limit.

A. Effective-field theory for short-range models

The central idea of this effective-field method is to reta
the fluctuations but to treat the fluctuations at different s
as statistically independent. This amounts to approxima
the probability distributionP(n1 , . . . ,nN ,t) by a product of
identical single-site distributionsPn ,
of
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P~n1 , . . . ,nN ,t !5)
i51

N

Pn i
~ t !. ~11!

Inserting this into the master equation~9! and summing over
all states of sitesi52, . . . ,N gives an equation of motion fo
the single-site distributionPn1

,

d

dt
Pn1

5 (
m1Þn1

@2Pn1
W~n1→m1!1Pm1

W~m1→n1!#,

~12!

where

W~m1→n1!5^w~m1→n1!&P ~13!

is the transition probability averaged over the statesn i of all
sitesiÞ1 according to the distributionPn i

. Since all sites of

the systems are equivalent, the site indexi will be suppressed
from now on.

Note that the average magnetizationsm(1), m(2) of the
two systems and the Hamming distanceD can be easily ex-
pressed in terms ofPn ,

m~1!5P111P122P212P22 , ~14a!

m~2!5P112P121P212P22 , ~14b!

D5P121P21 . ~14c!

So far the considerations have been rather general. In
following subsections we will apply the general formalism
different physical situations. In Sec. III B we investigate
two-dimensional system with short-range interactions a
vanishing external field. We determine not only the locati
of the spreading transition but also calculate the station
states of the systems. Section III C deals with the limit
infinite-range interactions, and in Sec. III D we study t
influence of an external magnetic field on the spreading tr
sition.

B. Solution of a two-dimensional model

In this subsection we investigate the damage spreading
a two-dimensional Glauber Ising model on a hexagonal
tice ~with each site having three nearest neighbors!. The in-

TABLE II. Probabilities for the states of the three neighborin
sites and resulting local magnetic fieldsh(1) andh(2) for the two-
dimensional case on the hexagonal lattice.

h(1)

h(2) 3J J 2J 23J

3J P11
3 3P11

2 P21 3P11P21
2 P21

3

J 3P11
2 P12 3P11

2 P221 3P12P21
2 1 3P21P22

2

6P11P12P21 6P12P21P22

2J 3P11P12
2 3P12

2 P211 3P11P22
2 1 3P21P22

2

6P11P12P22 6P12P21P22

23J P12
3 3P12

2 P22 3P12P22
2 P22

3
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5160 55THOMAS VOJTA
teraction is taken to be a nearest-neighbor interaction
strengthJ, and the external magnetic field is set to zero.

In order to solve the master equation~12! for the single-
site distributionPn we first determine the effective transitio
probabilitiesW(n→m). Let us calculate the probabilities fo
a particular sitei . To this end we have to average the tra
sition probabilities given in Table I with respect to the sta
of all other sites of the system. However, since the inter
tion is between nearest neighbors, the transition probabil
depend on the states of these three neighbors of sitei only.
ag

n
em
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-
s
-
s

Each of the neighbors can be in one of four states, thus
have to consider 64 different configurations of the neighb
ing sites. The probabilities for these configurations and
resulting local magnetic fields are given in Table II.

With the help of Tables I and II the averaged transiti
probabilities~13! can be easily calculated by adding up t
contributions of all 64 configurations. The resulting expre
sion are quite lengthy though simple. Therefore we pres
only the example
W~22→11 !5^w~22→11 !&5^v@min~h~1!,h~2!#&

5P11
3 v313P11

2 P21v113P11P21
2 v211P21

3 v231~3P11
2 P1213P11

2 P2216P11P12P21!v1

1~3P12P21
2 16P12P21P22!v2113P21P22

2 v231~3P11P12
2 13P12

2 P2116P11P12P22!v21

1~3P11P22
2 16P12P21P22!v2113P21P22

2 v231~P12
3 13P12

2 P2213P12P22
2 1P22

3 !v23 ,

~15!
e
id-
t the
we
av-
res
the

e

e

with

vn5v~nJ!. ~16!

Equations of motion for the magnetizationsm(1) and
m(2) as well as for the damageD can be derived by inserting
definitions~14! into the single-site master equation~12!. Af-
ter some manipulations the equations of motion for the m
netizations read

d

dt
m~n!5m~n!$211 3

4 @ tanh~3J/T!1tanh~J/T!#%

1 1
4 ~m~n!!3@ tanh~3J/T!23 tanh~J/T!#. ~17!

These equations are, of course, identical to the equatio
motion of the magnetization derived for a single syst
within the same framework of statistically independent flu
tuations. The point at which the coefficient of the term line
in m on the right-hand side of Eq.~17! changes sign define
the ~equilibrium! critical temperatureTC of the Ising model
within our approximation.TC is thus determined by

3
4 @ tanh~3J/TC!1tanh~J/TC!#51, ~18!

which givesTC /J'2.104. The stationary solution of Eq
~17! can be used to determine the magnetization as a fu
tion of temperature. For temperaturesT,TC , we obtain

~m~n!!25

3
4 @ tanh~3J/T!1tanh~J/T!#21

3
4 tanh~J/T!2 1

4 tanh~3J/T!
. ~19!

We now turn to the discussion of the Hamming distanceD.
After inserting Eq.~14! into ~12!, the equation of motion of
the Hamming distanceD can be written as
-

of

-
r

c-

d

dt
D5~12D !@W~22→12 !1W~22→21 !#

1D@211W~21→12 !1W~21→21 !#.

~20!

Since in the following we will be mainly interested in th
stationary solutions of this equation, we restrict the cons
erations to cases where both systems are in equilibrium a
beginning of the damage spreading process. In doing so
exclude, however, all phenomena connected with the beh
ior after a quench from high temperatures to temperatu
belowTC . These phenomena require an investigation of
early-time behavior and will be analyzed elsewhere@15#.

It is now useful to distinguish three cases,~i! damage
spreading in the paramagnetic phase (T.TC), ~ii ! the ferro-
magnetic phase (T,TC) where both systems are in the sam
pure state~i.e., free energy valley!, m(1)5m(2)5m, and~iii !
the ferromagnetic phase (T,TC) where the two systems ar
in different pure states,m(1)52m(2)5m.

1. Paramagnetic phase

In the paramagnetic phase allPn can be expressed in
terms ofD:

P115P225 1
2 ~12D !, ~21a!

P125P215 1
2D. ~21b!

By inserting this into the transition probabilitiesW(n→m)
calculated from Eq.~13! and Table II, the equation of motion
~20! of the Hamming distanceD can be written as

d

dt
D5 1

2 ~D23D212D3!tanh~3J/T!. ~22!



nt

rr
e

ic
e
n-
n
s
th

ch

nt

a
tie

es
es

t.

t

res

Fig.
am-

der.

e,
cor-

in
ms

l
ds

in
es

e

re

55 5161CHAOTIC BEHAVIOR AND DAMAGE SPREADING IN . . .
This equation has three stationary solutions~fixed points!,
viz. D1*50 which corresponds to both systems being ide
cal,D2*51 whereS(1)52S(2) for all sites andD3*5 1

2 which
corresponds to the two systems being completely unco
lated @16#. To determine the stability of the fixed points, w
linearize the equation of motion~22! in dk5D2Dk* . The
linearized equation has the solution

dk~ t !5dk0e
lkt, ~23!

with l15l25
1
2tanh(3J/T) and l352 1

4tanh(3J/T). Conse-
quently, the only stable fixed point isD3*5 1

2. In the whole
paramagnetic phase the damage spreads, and asymptot
reaches the valueD5 1

2. If the two systems start very clos
together (D small initially! their distance in phase space i
creases exponentially with a Lyapunov expone
l15

1
2tanh(3J/T). Therefore the Glauber dynamics show

chaotic behavior in the whole paramagnetic phase. Note
for large temperatures the Lyapunov exponentl1 goes to
zero asl1;3J/T. Thus the time it takes the system to rea
the stationary stateD5D3*5 1

2 diverges forT→`. This has
recently also been found in simulations@17#. The depen-
dence of the Lyapunov exponent on temperature is prese
in Fig. 1.

2. Ferromagnetic phase with m„1…5m„2…5m

In this section we study the case where both systems
in the same free energy valley. The single-site probabili
Pn can be expressed in terms ofD andm:

P115 1
2 ~12D1m!, ~24a!

P225 1
2 ~12D2m!, ~24b!

P125P215 1
2D. ~24c!

FIG. 1. Magnetizationm, asymptotic Hamming distanceD* ,
and Lyapunov exponentl1 as functions of temperature for th
Glauber Ising model. BelowTc the curve forD* has two branches
corresponding to the two systems being in the same or in diffe
free energy valleys.
i-

e-

ally

t

at

ed

re
s

After inserting this into the averaged transition probabiliti
~13! the equation of motion of the Hamming distance tak
the form

d

dt
D5 1

2 ~D23D212D3!tanh~3J/T!2 3
4m

2@2Dtanh~J/T!

2D2tanh~J/T!1D2tanh~3J/T!#. ~25!

This equation has two fixed pointsD* in the interval@0,1#.
The first fixed point isD1*50. By linearizing Eq.~25! in
d15D2D1* we investigate the stability of this fixed poin
We again find thatd1(t) follows the exponential law~23!
with l15

1
2tanh(3J/T) 2 3

2m
2tanh(J/T). Using expression~19!

for m2, it is easy to discuss the behavior ofl1. For tempera-
tures larger than a spreading temperatureTSwhich is defined
by

3m2tanh~J/TS!5tanh~3J/TS!, ~26!

the Lyapunov exponentl1 is positive and thus the fixed
point D1* is unstable. ForT,TS the Lyapunov exponen
l1 is negative, and the fixed pointD1* is stable. Conse-
quently, the Glauber dynamics is chaotic for temperatu
above TS but regular below. Equation~26! gives
TS'1.739J'0.826TC .

For temperaturesT.TS , the equation of motion~25! pos-
sesses another fixed pointD3* with 0,D3*, 1

2, which is al-
ways stable. Its temperature dependence is presented in
1. Close to the spreading temperature the asymptotic H
ming distanceD3* increases linearly withT2Ts , which cor-
responds to the spreading transition being of second or
The order parameter exponentb, defined byD*5uT2Tsub
is given by b51. In contrast to the paramagnetic phas
where the two systems eventually become completely un
related, forTs,T,Tc the asymptotic Hamming distanceD
is always smaller than12, so that the two systems rema
partially correlated~as it must be the case since both syste
are in the same free energy valley!. Directly at the spreading
point the term linear inD in Eq. ~25! vanishes. For smal
Hamming distances the equation of motion now rea
dD/dt}2D2, which gives a power-law behaviorD(t)
}t2d. The critical exponent is given byd51.

3. Ferromagnetic phase with m„1…52m„2…5m

We now turn to the case where the two systems are
different free-energy valleys. The single-site probabiliti
Pn can be expressed in terms ofD andm:

P115P225 1
2 ~12D !, ~27a!

P125 1
2 ~D1m!, ~27b!

P215 1
2 ~D2m!. ~27c!

With this substitutions the equation of motion~20! of the
Hamming distance can be written as

nt
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5162 55THOMAS VOJTA
d

dt
D5 1

2 ~D23D212D3!tanh~3J/T!

1 3
4m

2@ tanh~3J/T!1tanh~J/T!22Dtanh~3J/T!

1D2tanh~3J/T!2D2tanh~J/T!#. ~28!

Analogously to Sec. III B 2, this equation possesses
fixed points. The fixed pointD2*51 exits for all tempera-
tures. It is stable for temperatures belowTS and unstable
above. ForT.TS, Eq.~28! has another fixed pointD4* , with
1
2,D4*,1, which is always stable. Its temperature dep
dence is given in Fig. 1.

C. Limit of high dimensions

In this subsection we study damage spreading in
Glauber Ising model in the limit of high dimensions, i.e.,
the mean-field limit proper. Within the framework of ou
effective field approach high dimensions correspond to h
coordination numbers, i.e., high numbers of nearest ne
bors. We therefore consider a Glauber Ising model on a
tice with z nearest neighbors, and study the limitz→`. To
obtain a physically sensible limit we scale the interact
strength withz, J5J0 /z.

In the limit z→` the thermodynamics is described by t
usual mean-field theory. The equilibrium critical temperatu
is given byTC5J0, and in the ferromagnetic phase the ma
netization is determined by the equation of state

m5tanh~mJ0 /T!. ~29!

In order to determine the spreading temperatureTS it is
sufficient to study the equation of motion~20! of the Ham-
ming distance to linear order inD. To this end we have to
determineW(21→12) andW(21→21) to zeroth or-
der inD, butW(22→12) andW(22→21) to linear
order inD.

To zeroth order inD we haveh(1)5h(2)5h and in the
limit z→` h is d distributed ath5J0m. The transition prob-
abilities are thus given by~see Table I!

W~21→12 !5v@2max~2h~1!,h~2!!#5v~2J0umu!,
~30a!

W~21→21 !5v@min~2h~1!,h~2!!#5v~2J0umu!.
~30b!

We now calculateW(22→12) andW(22→21) to
linear order inD. These transition probabilities do not have
zeroth-order contribution. In linear order inD only those
configurations of thez neighboring sites contribute for whic
the two systems differ in the state of a single site. In this c
h(1) andh(2) differ by 2J0 /z. Therefore we obtain

W~22→12 !5Q~h~1!2h~2!!@v~h~1!!2v~h~2!!#

5zP12~2J0 /z!v8~J0m!. ~31a!

Here v8(h) is the derivative ofv with respect to its argu-
ment. The additional factorz in the second line arises sinc
each of thez neighbors can be the one where the two s
tems differ. Analogously we obtain
o

-

e

h
h-
t-

e
-

e

-

W~22→21 !5Q~h~2!2h~1!!@v~h~2!!2v~h~1!!#

5zP21~2J0 /z!v8~J0m!. ~31b!

By inserting these results for the transition probabilities in
the equation of motion~20! of the Hamming distance, we
find

d

dt
D5lD, ~32!

where the Lyapunov exponentl is given by

l52112
exp~2J0umu/T!

exp~J0umu/T!1exp~2J0umu/T!

1
4J0 /T

@exp~J0m/T!1exp~2J0m/T!#2
. ~33!

This can be simplified to

l52m1~12m2!J0 /T. ~34!

In the paramagnetic phase (m50) the Lyapunov exponent is
simply l5J0 /T.0. Thus the Glauber dynamics is chaot
in the whole paramagnetic phase.

The temperature dependence of the Lyapunov expon
l in the ferromagnetic phase is presented in Fig. 2.l
changes sign atTS'0.827J050.827TC . Consequently, the
dynamics is chaotic for temperatures larger thanTS
50.827J and regular for temperatures smaller thanTS . Note
that the value forTS /TC for the two-dimensional model o
Sec. III B is very close to but not identical to the value f
the casez→`.

D. Damage spreading in a field

In this subsection we generalize the effective-field the
to a finite external magnetic fieldh. For simplicity, we do

FIG. 2. Magnetizationm and Lyapunov exponentl1 as func-
tions of temperature for the Glauber Ising model with vanish
external field in the limit of high dimensions.
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this only for the model introduced in Sec. III C, viz. th
limiting case of high dimensions.

The equation of state~29! has to be replaced by

m5tanh@~mJ01h!/T#. ~35!

Analogously, in all transition probabilitiesW(n→m) the
term J0m has to be replaced byJ0m1h. After inserting the
transition probabilities into the equation of motion~20! of
the Hamming distance, one findsd/dt D5lD, and the
Lyapunov exponent can again be expressed in terms of
magnetization:

l52m1~12m2!J0 /T. ~36!

The temperature and field dependence of the Lyapunov
ponent is illustrated in Fig. 3. Obviously, the external fie
shifts the spreading temperature to higher values, thus
pressing chaotic behavior and stabilizing the regular ph
The phase boundary between the chaotic and the reg

FIG. 4. Phase diagram of damage spreading in the Glauber I
model in the limit of infinite dimensions. The full line shows th
result of our theory, the squares are simulation results of Le C¨r,
with T andh rescaled byTC .

FIG. 3. Lyapunov exponentl as a function of temperature fo
external fieldsh50, 0.2, 0.4, and 0.6~from up to down!.
he

x-

p-
e.
lar

phase can be easily determined by solving the equa
l50. The resulting phase diagram is presented in Fig. 4.
comparison we also give simulation results@18# for a three-
dimensional Glauber Ising model. An investigation of Eq
~35! and~36! for large temperatures shows that the spread
temperatureTS(h) diverges forh/J0→1 as

TS~h!/J051/~12h/J0! for h/J0→1. ~37!

Consequently, for external fieldsh.J0 the dynamics is al-
ways regular.

IV. CONCLUSIONS

To summarize, we developed a master equation appro
to damage spreading and applied it to the Glauber Is
model. The master equation is an exact description of
damage spreading problem; it does not contain any appr
mations. We then solved the master equation within
effective-field theory for various physical situations.

In this final section we discuss some aspects which h
not yet been covered. First , we compare the results of
effective-field theory with numerical simulations of dama
spreading of the Glauber Ising model in two and three
mensions@9,11,18#. In agreement with the simulation resul
we find a spreading transitionbelow the equilibrium critical
temperature of the Ising model. Our mean-field val
Ts /Tc'0.827 is considerably lower than the latest numeri
values @11# of 0.992 for a two-dimensional Glauber Isin
model, and 0.922 for a three-dimensional Glauber Is
model. We expect our value to be exact, however, for
infinite-dimensional model or, equivalently, for infinite rang
of the interaction. Grassberger@10# conjectured that the dam
age spreading transition in the Glauber Ising model is in
universality class of directed percolation. Our results
compatible with that, since the values of the critical exp
nentsb ~which describes the dependence of the station
damage on the reduced temperature! andd ~which describes
the time decay of the damage at the spreading tempera!
are identical to the mean-field valuesb5d51 of directed
percolation.

Second, we want to clarify the relation to damage spre
ing in an Ising model withheat-bathdynamics. As already
discussed in Sec. I, the heat-bath Ising model does not s
any spreading of damage within a single pure state~free-
energy valley!. When applying our effective-field theory t
the heat-bath Ising model we find@14# only a single fixed
pointD1*50 if both systems are in the same pure state@19#.
If the two systems are in different pure states~for T,TC) we
also find a single fixed point only, vizD2*5m. Thus there is
no chaotic behavior within one pure state. However,
damage can spread~or, at least, will not heal! in the heat-
bath Ising model if the two copies start in different pu
states or choose to develop into different pure states aft
quench from high temperatures. For this case a mean-
theory similar to ours has been considered before@20#.

Finally, we discuss possible extensions of the pres
theory. In principle, the master equation approach of Sec
can be applied to any damage spreading problem in wh
the dynamics of a single system is given by a stochastic m
as in Eq.~2! ~or a more general map that involves seve

ng
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sites in each time step!. It would be very interesting to rema
the master equation onto a field theory, and then apply re
malization group methods to determine the critical behav

An obvious idea is to include quenched disorder into
Hamiltonian of the Ising model either in the form of a ra
dom external field or in the form of random interaction
Such systems have been numerically investigated in s
detail, in particular in the case of random interactions@21#.
Recently some interesting results have also been achi
nn

n

r-
r.
e

.
e

ed

for random fields@17#. Some investigations on the applica
tion of the master equation approach to disordered syst
are in progress.
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